Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells

Identifieur interne : 000F47 ( Main/Repository ); précédent : 000F46; suivant : 000F48

Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells

Auteurs : RBID : Pascal:13-0303849

Descripteurs français

English descriptors

Abstract

In this contribution optical simulations of both flat and textured heterojunction silicon solar cells are presented and verified experimentally. Using Advanced Semiconductor Analysis (ASA) software, we optimize a double-layer anti-reflective (AR) coating, which has an additional SiOx film on the top of the existing indium tin oxide (ITO) coating. Our approach is based on maximizing the absorbance of the crystalline silicon (c-Si) wafer, which is strongly correlated with the solar cell's short circuit current (Jsc). Our simulations show that for a flat heterojunction silicon solar cell c-Si absorbance can increase by using a double-layer AR coating instead of a single-layer AR coating. As predicted by the simulations, experimental devices show corresponding Jsc increase, leading to the increase of the solar cell efficiency. On a textured heterojunction silicon solar cell the incident light travels an oblique path through the AR coating and we use an advanced ray-tracing model to optimize the single and double-layer AR coating for this case. Our simulations show that for the textured heterojunction silicon solar cell, reflection losses are lower but parasitic absorption losses in the ITO and amorphous silicon layers play a more important role. Using a double-layer AR coating not only reduces reflection losses further, but because a thinner ITO layer can be used it also reduces parasitic absorption losses. Experimentally, our textured heterojunction silicon solar cell with a double-layer AR coating shows that the Jsc (active area) of 40.5 mA/cm2 and an efficiency of 19.0%.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303849

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Design and fabrication of a SiO
<sub>x</sub>
/ITO double-layer anti-reflective coating for heterojunction silicon solar cells</title>
<author>
<name sortKey="Zhang, D" uniqKey="Zhang D">D. Zhang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2600 GA Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Digdaya, I A" uniqKey="Digdaya I">I. A. Digdaya</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2600 GA Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Santbergen, R" uniqKey="Santbergen R">R. Santbergen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2600 GA Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Swaaij, R A C M M" uniqKey="Van Swaaij R">R. A. C. M. M. Van Swaaij</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2600 GA Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bronsveld, P" uniqKey="Bronsveld P">P. Bronsveld</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ECN Solar Energy, P.O. Box 1</s1>
<s2>1755 ZG Petten</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1755 ZG Petten</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zeman, M" uniqKey="Zeman M">M. Zeman</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>2600 GA Delft</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Van Roosmalen, I A M" uniqKey="Van Roosmalen I">I. A. M. Van Roosmalen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ECN Solar Energy, P.O. Box 1</s1>
<s2>1755 ZG Petten</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1755 ZG Petten</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Weeber, A W" uniqKey="Weeber A">A. W. Weeber</name>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>ECN Solar Energy, P.O. Box 1</s1>
<s2>1755 ZG Petten</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Pays-Bas</country>
<wicri:noRegion>1755 ZG Petten</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303849</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303849 INIST</idno>
<idno type="RBID">Pascal:13-0303849</idno>
<idno type="wicri:Area/Main/Corpus">000752</idno>
<idno type="wicri:Area/Main/Repository">000F47</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous material</term>
<term>Antireflection coating</term>
<term>Conversion rate</term>
<term>Crystalline material</term>
<term>Double layers</term>
<term>Experimental device</term>
<term>Heterojunction</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Performance evaluation</term>
<term>Ray tracing</term>
<term>Semiconductor materials</term>
<term>Short circuit currents</term>
<term>Silicon</term>
<term>Silicon oxides</term>
<term>Silicon solar cells</term>
<term>Software</term>
<term>Solar cell</term>
<term>System simulation</term>
<term>Tin addition</term>
<term>Transmission loss</term>
<term>Wafer</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche ITO</term>
<term>Couche double</term>
<term>Revêtement antiréfléchissant</term>
<term>Hétérojonction</term>
<term>Cellule solaire silicium</term>
<term>Simulation système</term>
<term>Logiciel</term>
<term>Addition étain</term>
<term>Pastille électronique</term>
<term>Cellule solaire</term>
<term>Courant court circuit</term>
<term>Dispositif expérimental</term>
<term>Taux conversion</term>
<term>Tracé rayon</term>
<term>Perte transmission</term>
<term>Matériau amorphe</term>
<term>Evaluation performance</term>
<term>Oxyde de silicium</term>
<term>Semiconducteur</term>
<term>Oxyde d'indium</term>
<term>Matériau cristallin</term>
<term>Silicium</term>
<term>SiOx</term>
<term>ITO</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Logiciel</term>
<term>Matériau amorphe</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In this contribution optical simulations of both flat and textured heterojunction silicon solar cells are presented and verified experimentally. Using Advanced Semiconductor Analysis (ASA) software, we optimize a double-layer anti-reflective (AR) coating, which has an additional SiO
<sub>x</sub>
film on the top of the existing indium tin oxide (ITO) coating. Our approach is based on maximizing the absorbance of the crystalline silicon (c-Si) wafer, which is strongly correlated with the solar cell's short circuit current (J
<sub>sc</sub>
). Our simulations show that for a flat heterojunction silicon solar cell c-Si absorbance can increase by using a double-layer AR coating instead of a single-layer AR coating. As predicted by the simulations, experimental devices show corresponding J
<sub>sc</sub>
increase, leading to the increase of the solar cell efficiency. On a textured heterojunction silicon solar cell the incident light travels an oblique path through the AR coating and we use an advanced ray-tracing model to optimize the single and double-layer AR coating for this case. Our simulations show that for the textured heterojunction silicon solar cell, reflection losses are lower but parasitic absorption losses in the ITO and amorphous silicon layers play a more important role. Using a double-layer AR coating not only reduces reflection losses further, but because a thinner ITO layer can be used it also reduces parasitic absorption losses. Experimentally, our textured heterojunction silicon solar cell with a double-layer AR coating shows that the J
<sub>sc</sub>
(active area) of 40.5 mA/cm
<sup>2</sup>
and an efficiency of 19.0%.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Design and fabrication of a SiO
<sub>x</sub>
/ITO double-layer anti-reflective coating for heterojunction silicon solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ZHANG (D.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>DIGDAYA (I. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SANTBERGEN (R.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>VAN SWAAIJ (R. A. C. M. M.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>BRONSVELD (P.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>ZEMAN (M.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>VAN ROOSMALEN (I. A. M.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WEEBER (A. W.)</s1>
</fA11>
<fA14 i1="01">
<s1>Photovoltaic Materials and Devices, Delft University of Technology, P.O. Box 5031</s1>
<s2>2600 GA Delft</s2>
<s3>NLD</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>ECN Solar Energy, P.O. Box 1</s1>
<s2>1755 ZG Petten</s2>
<s3>NLD</s3>
<sZ>5 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA20>
<s1>132-138</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110210</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>15 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303849</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>In this contribution optical simulations of both flat and textured heterojunction silicon solar cells are presented and verified experimentally. Using Advanced Semiconductor Analysis (ASA) software, we optimize a double-layer anti-reflective (AR) coating, which has an additional SiO
<sub>x</sub>
film on the top of the existing indium tin oxide (ITO) coating. Our approach is based on maximizing the absorbance of the crystalline silicon (c-Si) wafer, which is strongly correlated with the solar cell's short circuit current (J
<sub>sc</sub>
). Our simulations show that for a flat heterojunction silicon solar cell c-Si absorbance can increase by using a double-layer AR coating instead of a single-layer AR coating. As predicted by the simulations, experimental devices show corresponding J
<sub>sc</sub>
increase, leading to the increase of the solar cell efficiency. On a textured heterojunction silicon solar cell the incident light travels an oblique path through the AR coating and we use an advanced ray-tracing model to optimize the single and double-layer AR coating for this case. Our simulations show that for the textured heterojunction silicon solar cell, reflection losses are lower but parasitic absorption losses in the ITO and amorphous silicon layers play a more important role. Using a double-layer AR coating not only reduces reflection losses further, but because a thinner ITO layer can be used it also reduces parasitic absorption losses. Experimentally, our textured heterojunction silicon solar cell with a double-layer AR coating shows that the J
<sub>sc</sub>
(active area) of 40.5 mA/cm
<sup>2</sup>
and an efficiency of 19.0%.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Couche double</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Double layers</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Revêtement antiréfléchissant</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Antireflection coating</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Revestimiento antirreflexión</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Hétérojonction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Heterojunction</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Heterounión</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Cellule solaire silicium</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Silicon solar cells</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Simulation système</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>System simulation</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Simulación sistema</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Logiciel</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Software</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Logicial</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Pastille électronique</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Wafer</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Pastilla electrónica</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Dispositif expérimental</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Experimental device</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Dispositivo experimental</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Tracé rayon</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Ray tracing</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Trazado rayos</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Perte transmission</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Transmission loss</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Pérdida transmisión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Oxyde de silicium</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Silicon oxides</s0>
<s2>NK</s2>
<s5>22</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Semiconducteur</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Semiconductor materials</s0>
<s5>23</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Semiconductor(material)</s0>
<s5>23</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Matériau cristallin</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Crystalline material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Material cristalino</s0>
<s5>25</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Silicio</s0>
<s2>NC</s2>
<s5>26</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>SiOx</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000F47 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000F47 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0303849
   |texte=   Design and fabrication of a SiOx/ITO double-layer anti-reflective coating for heterojunction silicon solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024